OKAWA'S THEOREM AND WIDE SUBCATEGORIES OF COHERENT SHEAVES ON CURVES

ALEXEY ELAGIN

In this note we give an alternative proof of a well-known result by Okawa [9]: the derived category of a smooth projective curve X of genus ≥ 1 has no non-trivial semi-orthogonal decompositions. Arguments in [9] are based on Serre duality and the fact that the canonical line bundle on X is generated by global sections. Our proof is not using these facts, instead it grows from our study [6] and [5] of thick subcategories in coh X.

For the sake of the reader, we make the arguments concise and self-contained, and avoid terminology from [6] and [5] that is not needed for our application.

Recall that an abelian category \mathcal{A} is hereditary if $\operatorname{Ext}^i(A, B) = 0$ for any $A, B \in \mathcal{A}$ and $i \geq 2$. For example, the category $\operatorname{coh} X$ of coherent sheaves on a smooth curve is hereditary. The derived category $D^b(\mathcal{A})$ of a hereditary abelian category \mathcal{A} has simple structure: any complex over \mathcal{A} is isomorphic in $D^b(\mathcal{A})$ to the direct sum of its (shifted) cohomology objects. This allows one to relate thick (that is, idempotent-closed triangulated full) subcategories in $D^b(\mathcal{A})$ with certain subcategories in \mathcal{A} .

Definition 1. A full subcategory S of an abelian category A is called *wide* if S is closed under taking kernel, cokernels, and extensions.

Note that a wide subcategory is abelian, and the inclusion functor is exact.

Proposition 2. Let \mathcal{A} be an abelian hereditary category. Then there is a bijection between wide subcategories in \mathcal{A} and thick subcategories in $D^b(\mathcal{A})$, given by assignments

$$\mathcal{A} \supset \mathcal{S} \mapsto \langle \mathcal{S} \rangle \subset D^b(\mathcal{A}),$$
$$\mathcal{A} \supset \mathcal{T} \cap \mathcal{A} \leftrightarrow \mathcal{T} \subset D^b(\mathcal{A}),$$

where $\langle \mathcal{S} \rangle = \{ F \in D^b(\mathcal{A}) \mid H^i(F) \in \mathcal{S} \text{ for all } i \} \text{ is the smallest triangulated subcategory in } D^b(\mathcal{A}), \text{ containing } \mathcal{S}.$

Recall that an abelian category is said to be *finite length* if any object of \mathcal{A} has a finite filtration with simple factors. By Jordan — Hölder Theorem, the collection of such simple factor doesn't depend on the choice of filtration. Therefore, the Grothendieck group $K_0(\mathcal{A})$ is freely generated by isoclasses of simple objects in \mathcal{A} .

We present a new proof of the following theorem by Okawa [9].

The author wishes to thank the INI and LMS for the financial support and the School of Mathematics at the University of Edinburgh for their hospitality.

Theorem 3. Let X be a smooth connected projective curve over a field, and

$$D^b(\operatorname{coh} X) = \langle \mathcal{T}_1, \mathcal{T}_2 \rangle$$

be a semi-orthogonal decomposition. Then $\mathcal{T}_1=0$ or $\mathcal{T}_2=0$.

Proof. Recall that any sheaf on X is a direct sum of a torsion sheaf and a torsion-free sheaf. In this proof we call a triangulated subcategory $\mathcal{T} \subset D^b(\cosh X)$ torsion (resp. torsion-free) if all sheaves in $\mathcal{T} \cap \cosh X$ are torsion (resp. torsion-free).

Assume $\mathcal{T}_1, \mathcal{T}_2 \neq 0$, let $\mathcal{S}_i = \mathcal{T}_i \cap \operatorname{coh} X$ be the corresponding wide subcategories in $\operatorname{coh} X$. By Proposition 2, $\mathcal{S}_1, \mathcal{S}_2 \neq 0$. We claim that both $\mathcal{T}_1, \mathcal{T}_2$ are torsion-free. Indeed, assume there is a non-zero torsion sheaf $F \in \mathcal{T}_1$. Then for any non-zero torsion-free sheaf V one has $\operatorname{Hom}(V, F) \neq 0$. Hence $V \notin \mathcal{T}_2$ and \mathcal{T}_2 is torsion. Take a non-zero torsion sheaf $F_2 \in \mathcal{T}_2$, then $\operatorname{Ext}^1(F_2, V) \cong \operatorname{Hom}(V, F_2 \otimes \omega_X)^* \cong \operatorname{Hom}(V, F_2)^* \neq 0$ by Serre duality. Hence $V \notin \mathcal{T}_1$ and \mathcal{T}_1 is torsion. We deduce that $D^b(\operatorname{coh} X)$ is generated by torsion sheaves (use Proposition 2) and get a contradiction.

Now we know that $\mathcal{T}_1, \mathcal{T}_2$ are torsion-free. We claim that abelian categories \mathcal{S}_i are finite length categories. Take an object $F \in \mathcal{S}_i$ and prove that F has a finite filtration with simple (in \mathcal{S}_i) factors by induction in the rank r(F) of the vector bundle F. Indeed, if r([F]) = 0 then F = 0 and there is nothing to prove. Assuming F is not simple in \mathcal{S}_i , there is a non-trivial exact sequence $0 \to F' \to F \to F'' \to 0$ in \mathcal{S}_i . Here r([F]) = r([F']) + r([F'']), r([F'']), r([F'']) > 0, and r([F']), r([F'']) < r([F]). By induction F', F'' have a filtration with simple factors, hence F also does.

Next, we note that the number of isoclasses of simple objects in S_1 , S_2 is finite. Indeed, $D^b(\cosh X)$ has a classical generator (see [2]), thus admissible subcategories \mathcal{T}_i also do. Replacing a complex by the direct sum of its cohomology sheaves, one can assume that there are classical generators $G_i \in S_i$ for \mathcal{T}_i . It is easy to see now that any object in S_i has a filtration with simple factors being simple factors of G_i , and there are finitely many of these. We conclude that the Grothendieck group $K_0(S_i) \cong K_0(\mathcal{T}_i)$ is finitely generated for i = 1, 2, and $K_0(D^b(\cosh X)) \cong K_0(\mathcal{T}_1) \oplus K_0(\mathcal{T}_2)$ is also finitely generated. But this is impossible for a curve of genus ≥ 1 .

In fact, Theorem 3 is a special case of a more general statement for the derived category of a smooth orbifold curve, obtained in [5]. Consider a smooth orbifold \mathbb{X} , whose underlying scheme is a smooth projective curve X. Such \mathbb{X} can be constructed from X be applying so called root construction at some points $x_1, \ldots, x_n \in X$ with multiplicities $r_1, \ldots, r_n \geq 2$. See [4] or [1, Sect. 3] for stack-theoretic definition of \mathbb{X} and [8, Sect. 4] for elementary representation-theoretic description of the resulting category of coh \mathbb{X} coherent sheaves on \mathbb{X} . In contrast to the smooth case, coh \mathbb{X} contains exceptional torsion sheaves, supported at orbifold points x_1, \ldots, x_n . The following theorem from [5] essentially says that all semi-orthogonal decompositions of $D^b(\operatorname{coh} \mathbb{X})$ are due to such exceptional torsion sheaves.

Theorem 4. Let \mathbb{X} be a smooth connected projective orbifold curve whose underlying curve has genus ≥ 1 . Assume $D^b(\operatorname{coh} \mathbb{X}) = \langle \mathcal{T}_1, \mathcal{T}_2 \rangle$ is a semi-orthogonal decomposition. Then

either \mathcal{T}_1 or \mathcal{T}_2 is generated by an exceptional collection of torsion sheaves. Moreover, there are finitely many subcategories in $D^b(\cosh \mathbb{X})$ generated by an exceptional collection of torsion sheaves, and they can be explicitly classified.

References

- [1] Daniel Bergh, Valery A. Lunts, and Olaf M. Schnürer. Geometricity for derived categories of algebraic stacks. Selecta Mathematica, 22:2535–2568, 2016.
- [2] Alexey Bondal and Michel Van den Bergh. Generators and representability of functors in commutative and noncommutative geometry. Moscow Mathematical Journal, 3:1–36, 2003.
- [3] Kristian Brüning. Thick subcategories of the derived category of a hereditary algebra. Homology, Homotopy and Applications, 9:165–176, 2007.
- [4] Charles Cadman. Using stacks to impose tangency conditions on curves. American Journal of Mathematics, 129:405–427, 2003.
- [5] Alexey Elagin. Thick subcategories on weighted projective curves and nilpotent representations of quivers, arxiv:2407.01207
- [6] Alexey Elagin and Valery A. Lunts. Thick subcategories on curves. Advances in Mathematics, 378:107525, 2021.
- [7] Henning Krause. Homological Theory of Representations. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2021.
- [8] Helmut Lenzing. Representations of finite-dimensional algebras and singularity theory. In Trends in ring theory (Miskolc, 1996), volume 22, pages 71–97. Amer. Math. Soc. Providence, RI, 1998.
- [9] Shinnosuke Okawa. Semi-orthogonal decomposability of the derived category of a curve. Advances in Mathematics, 228:2869–2873, 2011.

University of Edinburgh, School of Mathematics Email address: alexey.elagin@gmail.com